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Abstract

The use of triphones to cope with contextual effects in phoneme-HMM based
speech recognition results in a huge increase in the number of parameters
which must be estimated. One solution to this problcni is to apply cluster-
ing techniques to the triphone set to produce a smaller set of "generalised
triphone)'. An alternative is to use knowledge from phonetics of key fac-
tors which lead to context-related differences to define smaller but sufficient
sets of context-sensitive HMMs. This paper reports an investigation of these
methods in the context of the ARM continuous speech recognition system.
Experiments confirm that the size of the triphone set cai be suostanuaiiy re-
duced by clustering with no degradation in recognition accuracy. These results
are compared with the outcome of experiments using two knowledge-drive ap-
proaches. It is shown that, in this case, superior performance is obtained using
the data-driven methods.

*Permanent address Department of Psychology, University Colege London

Copyright @ Controller HMSO, London, 1990.
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1 Introduction

The work described in this report was conducted at the UK Speech Research Unit
as part of the Airborne Reconnaissance Mission (ARM) continuous speech recogni-
tion project. The aim of the ARM project is accurate recognition of continuously
spoken airborne reconnaissance reports using a speech recognition system based on
phoneme-level hidden Markov models (HMMs). The A-RM project is described in
[2]. The work described here is based on version 6 of the ARM system [2].

The more recent versions of the ARM system use triphone HMMs to moacel
the context-sensitivity of the acoustic patterns corresponding to phonemes. This
approach makes the simplifying assumption that context-related variations in the
acoustic realisation of a particular phoneme depend only on the immediately pre-
ceding and following phonemes. This means that rather than modelling a phoneme
using a single HMM, each phoneme is modelled using a set of HMMs, one for each
pair of phonemes which occur as its immediate neighbours iij the ARM baseform
dictionary.

Depending on the speaker, there are approximately 1500 word-internal tri-
phones in the ARM vocabulary. If, as in the present experiments, a 26 dimensional
parameterisation of the acoustic front-end is used, this results in a speech recognition
system with approximately 234,000 parameters. Assuming that 20 minutes of speech
is used to train the system and that the acoustic front-end produces 100 frames per
second, the number of trairing observations is 3,120,000, or approximately 13 obser-
vations per parametei. These observations are not statistically independent, nor are
they uniformly distributed between triphones. In fact approximately 400 of the tri-
phones in the ARM vocabulary are not represented in the training set. Consequently
many of the triphone HMM parameters will be undertrained.

The solution to this training problem is to reduce the number of independent
system parameters so that those which remain can be estimated more robustly from
the training data. The most obvious way to achieve this is to "tie" together different
system parameters so that they share the same training material. The simplest
example of such an approach is the "grand" variance method [3] in which all HMM
state output probability density functions share the same covariance matrix. The
results of applying the grand variance method in the context of the ARM system
are reported in 14].

An alternative method for reducing the number of system parameters is to
identify classes of pairs of phonemes which have the same contextual effect on a
given phoneme, and then to model the resulting equivalence class of triphones using
P single HMM. The most common approach to identifying such classes is to apply
clustering techniques to the full triphone set to produce clustered or "generalised"
triphones 15]. An alternative to this data-driven method is to use phonetic knowledge
to identify the most important factors which lead to context related differences, and
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then to use this information to define smaller but sufficient sets of context sensitive
HMMs.

This research note reports the results of continuous speech recognition exper-
iments using both data-driven and knowledge-driven approaches to triphone clus-
tering. The data driven approach uses the triphone clustering algorithm described
in [6] to incrementally reduce the size of the triphone set from 1500 down to less
than 100 generalised triphones. In addition, two knowledge driven approaches are
reported: separate modelling of syllable initial and syllable final consonantr [7], and
generalised triphones defined by places of articulation of the neighbouring phonemes.
The corresponding HMM set sizes are 71 and 400 respectively.

This report uses the standard SAMPA computer compatible European pho-
netic notation system described in [10].

2 The Triphone Based ARM system (ARM-6)

The version of the ARM system which is used in the present experiments is ARM-6,
a triphone-HMM based system with grand variance.

Front-end acoustic analysis in all versions of the ARM system is derived from
the SRUbank filterbank analyser in its default configuration of 27 critical band
filters spanning the range 0 to 10kHz and producing 100 frames per second. In the
present experiments the feature vector 4; = (Of',.-f o 2

1) at time t is a 26 dimensional
vector obtained from the SRUbank output vector it as follows: The mean channel
amplitude m(7t;) of T7 is subtracted from each component of z7, and the resulting
vector is rotated using a discrete cotine transform to obtain a new feature vector Ut.
The vector 6o is then defined by

0 ,d = ( 
d , d 1 ... , 12

o,= ,_(
7,;)

o= (Wt+ 2d - w,2d), d = 14, ... ,25

Of" s = (m(vI. 2 ) - m(v,- 2 ))

This is the CC12h parameterisation which was described and evaluated in [8).

Acoustic-phonetic processing in ARM-6 uses a set of approximately 1500
HMMs (the precise number depends on the speaker) consisting of:

* Four single state "non-speech" HMMs to cope with non-speech sounds in re-
gions of the test data between spoken sentences.

* Six word-level HMMs for the commonly occuring short words "air", "at", "in".
"of", "oh" and "or". The number of states in each of these word-level HMMs
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is equal to three times the number of phonemes in the baseform transcription
of the corresponding word.

9 Approximately 1490 three-state triphone HMMs, one for each word-internal
triphone which occurs in the ARM vocabulary. Since the baseform pronun-
ciations of ARM v6cabulary words vary between speakers in the speaker-
dependent ARM system, the precise number of triphone HMMs will be dif-
ferent for each speaker.

As with earlier versions of the ARM system, all HMM states in ARM-6 are
identified with single multivariate Gaussian state output probability density func-
tions with diagonal (co)variance matrices. In ARM-6 a single "grand" covariance
matrix is shared by all HMM states 133.

Words in the ARM vocabulary are related to phonemes through a dictionary
of "baseform" phonemic transcriptons. In the current, speaker-dependent, version
of the ARM system this dictionary is modified for each speaker. These modifications
are concerned with broad differences, for example between "northern english" and
"southern english", rather than with fine details of the speakers pronunciation. It
is assumed that spoken examples of vocabulary words conform to these baseform
transcriptions.

3 HMM Training and Recognition

3.1 Training and Test Data

Speaker dependent recognition experiments were conducted using speech from three
speakers (SJ, RM and MR) as training and test material. The training set consisted
of 37 ARM reports per spe-,ker, (224 sentences, 1985 words per speaker) chosen to

give maximum coverage of phonemes which occur infrequently in the ARM vocabu-
lary. Ten reports from the same speakers (540 words, 2293 phonemes per speaker)
were used as test material.

3.2 Monophone HMM Training

For each speaker initial estimates of the parameters of context-insensitive monophone
phoneme HMMs were obtained from the equivalent of two ARM reports of speech,
hand labelled at the phoneme level. Similarly, initial estimates of the common
word HMM parameters were obtained from single examples of these words extracted
from continuous speech. The initial estimates of parameters of a single state "non-
speech" HMM were obtained from a typical non-speech region of the training data.
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the training data. This model was used as the initial model for all four non-speech
HMMs. The models were optimised with respect to the complete training set for that
speaker labelled orthographically at the sentence level. Standard sub-word HMM
training procedures were used in which sentence level HMMs were constructed from
phoneme-level HMMs using the dictionary of baseform transcriptions of ARM vo-
cabulzry words. These models were then mapped onto the sentence level acoustic
data using the forward backward algorithm to obtain coni-ibutions to the model
parameter estimates.

3.3 Triphone HMM Training

The parameters of the context insensitive monophone HMMs were used as the initial
estimates for the parameters of the set of triphone HMMs. The triphone HMMs were
then optimised with respect to the complete speaker dependent training sets labelled
orthographically at the sentence level using the standard sub-word HMM training
procedures. This was followed by a further three iterations of the training algorithm:
the first to estimate the grand diagonal (co)variance matrix, the second to reestimate
the mean vectors of the state output probability density functions given the grand
(co)variance matrix, and the third to do a final reestimation of the grand (co)variance
matrix. During these final three stages of training all other parameters were fixed.
This "fine tuning" of the grand covariance matrix was shown to be beneficial in [41.

3.4 Recognition

Recognition was performed using a one-pass dynamic programming algorithm with
beam search and partial traceback [1]. Results are presented in terms of % words
(or phonemes) correct and % word (or phoneme) accuracy. These are computed as
follows, using dynamic programming to align the true transcription of the test data
with the output of the recogniser:

N-S-D
% words correct = N x 100,N

N-S-D-I
% word accuracy = N x 100

where N is the number of words in the test set, and S, D and I are the
number of words recognised as the incorrect word, deleted and inserted respectively.

Three different syntaxes were used to constrain the recognition process: a
word syntax, which allows recognition of any sequence of wo::ds from the ARM
vocabulary; a full syntax (perplexity 6) which was used to generate the ARM reports,
and a triphone based simple syntax which allows any sequence of triphones to be
recognised
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4 Data-Driven Triphone Clustering

The data-driven approach to triphone clustering is taken from 16]. Starting with the
full triphone set, the process begins by computing the distance d(p 1 ,p 2 ) between all
pairs of triphone HMMs Pi and P2 which correspond to the same phoneme. The full
set of distances is then searched to find the pair of triphone HMMs (PI ,P2) for which
d(p1 ,p 2) is smallest. These two HMMs are then averaged to produce a single new
triphone HMM and the original two triphone HMMs are discarded. This process is
repeated until either the size of the triphone set has been reduced by a prespecified
amount (this will be refered to as the triphone reduction factor), or the minimum
distance is greater than some threshold.

The distance d(p1 ,p 2 ) between triphone HMMs p, and P2 is define by

d(p ,p,) = 'agxp 2., + 0.5 X mC'X w) r2.-.
d~p 2 , 2) =1.5

where.

111 + 172d~, Ld

In the above expression, n, is the number of occurrences of the triphone p, in
the t:aining data, P'o.d is the d16 component of tlP mean vector : of the sa state
of triphone HMM p,. (i = 1,2), and (7d is the dt1h component of the grand diagonal
(co)variance matrix.

For each of the speakers a full set of approximately 1500 triphone HNMMs
was created using the training procedures described in section 3. The clustering
method described above was then applied with triphone reduction factors of 400, 500,
600, 800, 1000, 1200 and 1400. The parameters of the resulting sets of generalised
triphones were then further reestimated as described in section 3.3.

5 Knowledge Driven Triphone Clustering

Two knowledge-driven approaches to triphone clustering were considered: separate
modelling of syllable initial and syllable final consonants 17], and a scheme in which
pairs of triphones whose contexts have the same places of articulation are assigned
to the same cluster.
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5.1 Separate Modelling of Syllable-Initial and -Final Con-
sonants

The background to the work in this subsection is described in more detail in [7 .

All occurrences of consonants in the ARM dictionary of baseform transcrip-
tions were designated as syllable-initial or syllable-final according to a technique for
location of syllable boundaries based on that described by Clements and Keyser in
[9]. This method is called the onset first principle and has two parts, only the first of
which is relevant to the current task. This part of the principle states that "Syllable-
initial consonants are maximised to the extent consistent with the syllable structure
conditions of the language in question". In practice what this means is "put as
many consonants as are permissible before a vowel". The permissible syllable initial
consonants are listed in appendix A.

Position Phonemes
Initial- S I dZ. b, d. D, f, g, h, j. k, I

m, n. p, r, s, S. t, T, v, w, z.
Final tS, dZ, b, d, D, f, g, k, 1, m, n

N, p, r, s, S, t, T, v., z, Z

Table 1: Syllable-initial and syllable-final consonants occurring in the AR!! vocab-
ulary for speaker MR.

Application of this technique to the ARM dictionaries results in the identifi-
cation of 43 syllable-initial or -final consonants. These are listed for speaker MR in
table 1. The corresponding lists for speakers SJ and RM are the same except that
"D" does not occur in the syllable-final position for these speakers. Taken together
with the vowel, common short word, and non-speech models, this results in sets of 72
HMMs for speaker MR and 71 HMMs for the other two speakers. Initial estimates of
parameters for these models were obtained from monophone HMMs, trained using
the method described in section 3.2. The full model set was then optimised using
a further 3 iterations of the training algorithms. Because the number of HMMs in
these model sets does not represent a significant increase over the size of the original
monophone HMM set, grand variance is not used in this experiment.

5.2 Generalised Triphones Defined by Places of Articula-
tion of Contexts

Each phoneme which occurs in the ARM vocabulary was classified according to
whether its place of articulation is front (corresponding to labial or dental place

i U M m mm , ,,.. • .,.,.6



of articulation, and denoted F). back (velar, denoted by B) or center (alveolar or

palato-alveolar, denoted by C). Diphthongs are allocated two classes, corresponding

to initial and final places of articulation. The classes are shown in table 2.

Phoneme PoA Phoneme PoA Phoneme PoA

al CF tS C dZ C
el FF A C { C
ol BF Q B 0 B

aU CB E F @ C

@U CB 3 C i F
IU FB I F u B

I@ FC U B V C

e@' CC b F d C
U1, BC D F f F

g B h C j B

k B I C m F
n c N B p F

r c s C S C

t c' T F v F
w F z C Z C

? B

Table 2: Classification of phonemes according to place of articulation. The phonemes

are represented using standard SAMPA computer readable sym.ols

Starting with the full triphone set, all triphones for a given phoneme which

have left-contexts with a common place of articulation and right-contexts with a
common place of articulation are assigned to the same cluster. Thus the triphones
(al : n k) (denoting aI with left-context P and right context k) and (al : r g)

(denoting al with left-context r and right-context g) are assigned to the same cluster

because n and r share the same place of articulation (C), and k and g share the

same place of articulation (B). All triphones in a given cluster are then averaged,

resulting in a set of approximately 400 generalised triphones. These triphones are
then optimised using the procedure destribed in 3.3 above.

6 Experiments and Results

For reference, results of recognition experiments using monophone HMMs with the
training and test data described in section 3 are presented in table 3. The state

output pdfs of the HMMs used in these experiments have state-specific (i.e. not

grand) covariance matrices.
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Phoneme Sy,tax Word Syntax Full Syntax

(Perplexity=53) (Perplexity=40'7) (Perplexity=6)
Speaker Phonemes 1 Phoneme Words Word Words Word

Correct Accuracy Correct Accuracy Correct Accuracy

MR 65.6% } 49.9% 78.3%j 53.3% 98.1% _ 97.807
RM 63.4/( 48.1% 73.5% 42.8% 98.07 96.5%
Si 66.2% i 53.3c/ " 79.8 -t 52.2% 99.117 98.77

Average 1 65.10 / 50.47 c 77.2% 49.4% 98.4%c 97.7%

Table 3: Results of experiments using context-insensitive monophone HMMs (540
word test set per speaker).

6.1 Experiments with Data Driven Triphone Clustering

The results of recognition experiments using sets of generalised triphones defined
using the data-driven triphone clustering method of section 4 are summarised in
figure 1. The figure shows % word accuracy with no syntax as a function of triphone
reduction factor for the three speakers. The results show no significant drop in
performance until the size of the triphone set is reduced to less than 300. This is
consistent with the results of triphone clustering experiments reported in 15' .

Note that performance with a triphone reduction factor of 400 is guaranteed
to be exactly the same as performance with no clustering. This is because over 400
of the triphones in the ARM system are not represented in the training set. Under
the current training scheme, these H.MMs retain the relevant monophone HM.M
statistics. Therefore they are clustered into a single generalised triphone, and this
generalised triphone has identical parameters to the original monophone.

The complete results for these experiments are presented in appcndix B.

6.2 Experiments with Knowledge Driven Triphone Clus-
tering

6.2.1 Separate Modelling of Syllable-Initial and -Final Consonants

The results of recognition experiments using separate HMMs for syllable-initial and
syllable-final consonants are shown in table 4. The final row of the table shows
average results for the corresponding number of generalised triphones derived using
the data-driven method.

The results are significantlv better than those for monophone HMMs shown

in table 3: The average word accumacy with no svntax is raised from 49.4%. for
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100]
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% Word \
Accuracy

50j

0 400 800 1200
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Figure 1: Word accuracy as a function of triphone reduction fa( tor for speakers AIR
(solid line). RM (dotted line) and SJ (dashed line) with no syntax.
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Phoneme Syntax Word Syntax Full Syntax
(Perplexity=72) (Perplexity=497) (Perplexity =6)

Speaker Phonemes Phoneme Words Word Words Word
Correct Accuracy Correct Accuracy Correct Accuracy

MR 66.4% 51.3% 81.5% 59.6% 98.1% 97.8%
RM- 60.3% 43.3% - 79.6% 56.1% 99.3% 98.5%
Si 67.9% 54.1% 85.0% - 62.0% 98.5% 97.6%7c

Average 64.7% 49.6% 82.0% 59.2% 98.6% 98.0%
Average
for 71 69.5% 57.0% 85.7% 67.2% 99.3% 99.0%

G Triphones ..... ... .. . ... .

Table 4: Results of experiments using separate modelling of syllable-initial and -final
consonants (540 word test set per speaker).

context-insensiti ve HMMs to 59.2,i when syllable-initial and -final consonants are
modelled separately. However the results compare badly with the figures for the same
number of generalised triphones derived using data-driven clustering. For example.
the average word accuracy with no syntax show in table 4 for separate modelling
of syllable-initial and -final consonants is 59.2% compared with 67.2% for the same

number of generalised triphones.

6.2.2 Place of Articulation Triphones

Table 5 shows the results of recognition experiments using generalised triphones
defined by places of articulation of context, as described in section 5.2. For compari-
son, the final row of the table shows the average results over 300 and 500 generalised
triphones derived using the data-driven method.

As was the case with separate modelling of syllable-initial and -final conso-
nants, the results for "place of articulation" triphones are significantly better than
those for context-insensitive monophone HMMs, but compare badly with results
which were obtained using data-driven triphone clustering methods to derive similar
numbers of generalised triphones. For example, table 5 shows that the average word
accuracy with no syntax for the 400 "places of articulation" triphones is 74.5%,
compared with 79.6% and 79.97 respectively for sets of 300 and 500 generalised
triphones derived using data-driven clustering.
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Phoneme Syntax Word Syntax Full Syntax

(Perplexity=497) (Perplexity=6)

Speaker Phonemes Phoneme Words Word Words Word
Correct Accuracy Correct Accuracy Correct Accuracy

MR 62.6% 44.9% 88.5% 75.0% 98.9% 98.3%
SR - 56.6% -38.8% 87.8% 69.3% 98.0% 96.3%

Si 59.9% 44.8% 92.6%- 79.1% 98.9% 98.5%
Average 59.7% 42.8% 89.6% 74.5% 98.6% 97.7%

Average over
300 and 500 73.9% 52.3% 92.6% 79.7% 99.4% 98.9%
G Triphones

Table 5: Results of place of articulation triphone clustering experiments (540 word
test set per speaker).

6.3 Summary of Results

The results of all of the experiments reported in section 6 are summarised in figure
2. The figure shows % word accuracy with no syntax averaged over the 3 speakers.

7 Conclusions

The results presented in this report demonstrate that the number of HMMs in a
triphone HMM based speech recognition system can be substantially reduced with
no significant reduction in speech recognition accuracy.

The standard data-driven approach to triphone clustering has been compared
experimentally with two particular knowledge driven approaches to modelling con-
textual effects: separate modelling of syllable-initial and -final consonants and "place

of articulation" triphones. In this case, the results do not support the hypothesis
that knowledge driven approaches to modelling contextual effect are advantageous
over the data-driven generalised triphone method. In fact, the superior performance
of the 71 generalised triphones over the same sized model set derived by separate

modelling of syllable-initial and -final consonants is statistically significant.
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0 10 20 30 40 50 60 70 80 90 100
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Full Triphone Set (1492)

Gen Triphones (992)

Gen Triphones (892)

Gen Triphones (692)

Gen Triphones (492)

PoA Triphones (400)

Gen Triphones (292)

Gen Triphones (92)

Gen Triphones (No GV)(71)

I/F Consonants (71)

Monophones (53)

Figure 2: Bar chart summarising the results presented in the previous section. The
figure shows average % word accuracy with no syntax for all HMM sets considered
in the experiments. The figures in brackets are the sizes of the HMM sets.
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A Permissible syllable-initial consonants and con-

sonant clusters

The following infoprmation is based on [9] and [71.

Single Consonants: All consonants except N are permitted initially.

Pairs of Consonants:

v I r p t k m n f T j

p - + 4- --------

b - + + --------
f - - + --

v - - - - - - - -- - -.

t + +- ---- ---- +
d + - -- ------

T + - -- ------

h - - -+

k 4. + -------- +
g . 4. .------- 4

-l - - - - - -

S + 4 - 4. 4. 4. . - 4.

S 4. . +

Mn - - - - - -

n - - - - - -

Triples of consonants:

w 1 r j

Op - + + +
a, - - +4 +

Ssk . . . .

For pairs and triples, rows specify the first member of the clusters and the
columns specify the second member. A "+" indicates that the row/ column pair is
a permitted syllable-initial cluster while a "-" indicates that it is not.

14
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B Results of triphone clustering experiments

This appendix presents tables which show the complete results of the data-driven
triphone clustering recognition experiments for the three speakers MR, RM and SJ.
The final row of each table is the figure for context-insensitive monophone HMMs.
The penultimate row of each table, marked with the symbol "f", corresponds to a
generalised triphone set where the number of models is the same as in the knowledge-
driven "separate modelling of syllable-initial and -final consonants" experiment. For
consistency with the latter, the generalised triphone sets which gave rise to the
results in the columns marked fdid not use grand variance. This explains why the
figures in these rows are superior to those in the immediately neighbouring rows.

Phoneme Syntax Word Syntax Full Syntax
(Perplexity=497) 1 (Perplexity=6)

Reduction -Phonemes I Phoneme Wordls -Word Words Word
Factor Correct Accuracy Correct Accuracy Correct Accuracy

S0-400 69.8% 39.4% 94.8% 81.3% 99.4% 99.1%
500 72.6% 46.1% 95.2% 83.5% ' 99.3% 98.7%
600 73.4% 47Ae 95.2% 83.7% 99.3% 98.7%
800 73.8% 50.0% 95.0% 83.1% 99.6% 99.4%
1000 73.4% 51.6% 95.0% 81.3% 99.3% 98.7%
1200 73.8% 54.4% 93.57 81.9% 99.3% 98.7%
1400 66.3% 55.3% 88.07 66.5% 99.4% 99.1%

1419-F-  - 69.4% 58. 1% 88.1% 69.8% 99.4% 99.47
1434 - . 66.2%_ 53.3% 79.8% _52.2% 99.1% 98.7%

Table 6: Results of data-driven triphone clustering experiments (speaker SJ, 540
word test set).
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PhoemeSynax Word Syntax Full Syntax
(Perplexity=497) (Perp]exity=6)

7e~iuct ion Phonemnes Phoneme Words Word Words Word
Factor Correct Accuracy Correct Accuracy Correct Accuracy
0-400 71.0% 40.4% 94.1% 81.7% 99.4% 98.7%

50 68.9% 38.6% 93.9% 81.1%0 99.4% 98.7%
600 72.4% 44.6% 93.0% 79.3% 99.3% 98.3%
800 72.9%7o 47.1% 93.9% 80.7%o 99.4% 98.7%

1000 72.6% 48_.2% 92.4%o -7 f67FT 9_.6% 769. 1 %
1200 72.1% 50.0% 91.5% 78.1%o 99.6% 99.3%
140 4.3 49.70/ 83.3% 58.5%c 99.3% 98. 5%/

1424T 66.6% 52.7% 85.6% 66.3% 99.3% 98.9%
1439 63.4 48.1 73.5% 42.8% 98.0% 96.5%o

Table 7: Results of data-driven triphone clustering experiments (speaker RM, 540
word test set).

Phoneme Syntax Word Syntax Full Syntax
_____(Perplexit-y=497) (Perplexity=6)

Reduction Phonemes- Phoneme_ Words Word Words Word
Factor Correct Accuracy Correct Accuracy Correct Accuracy

-~0-400 73.4% 45.1% 94. 1% 8 3.0% 99.8 99.8%F7
500 75.6%c 50.9% 9 3.5%(7 82.6% 99.8% 99.8%
60 76.0 -_51.4c7_ _ 93.3% 8.% 9.% 9~

800 76.7% 53.2%7 92.8% 82.8% 9.6% 99.4%
1000 76.1% 54.2% 91.9% 80.7% 99.4% 99.1%
1200 75 .5 % 5 5.1%O/ 91.5% 78.9% 993 987
1400 - . 85.0% 62.6%

11421 72.5% 60.3% 83.3%/ 65.6% 99.3% 98.7%
"_14- -656%T 49.9% 7T8.3%7 53.3% _98.1%/- _97.8%

Table 8: Results of data-driven triphone clustering experiments (speaker MR, 540
word test set).
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